Wednesday, 20 November 2013

SubSet Sum Problem Using Dynamic Programming

Given a set of non-negative integers, and a value sum, determine if there is a subset of the given set with sum equal to given sum.

Solution:

#include<iostream>
#include<stdio.h>
using namespace std;

bool isSubsetSum(int set[], int n, int sum)
{
   
    bool subset[sum+1][n+1];
 
    // If sum is 0, then answer is true
    for (int i = 0; i <= n; i++)
      subset[0][i] = true;
 
    // If sum is not 0 and set is empty, then answer is false
    for (int i = 1; i <= sum; i++)
      subset[i][0] = false;
 
     
     for (int i = 1; i <= sum; i++)
     {
       for (int j = 1; j <= n; j++)
       {
         subset[i][j] = subset[i][j-1];
         if (i >= set[j-1])
           subset[i][j] = subset[i][j] || subset[i - set[j-1]][j-1];
       }
     }
 
    
 
     return subset[sum][n];
}

 
int main()
{
    int T = 0 ;
    cin>>T;
    int *a;
    int n = 0;
    int sum = 0 ;
    for(int t = 0 ; t < T ; t++)
    {
            cin>>n;
            a = new int[n];
            for(int i = 0 ; i < n ; i++)
            {
                    cin>>a[i];
            }
            
            cin>>sum;
  if (isSubsetSum(a , n , sum ) == true)
     cout<<"YES"<<endl;
  else
     cout<<"NO"<<endl;
     delete []a;
  }
  return 0;
}


Tuesday, 19 November 2013

ZigZag Sequence Problem Top Coder 03 Semi Finals 3


Level Of the Problem ;-   EASY

A sequence of numbers is called a zig-zag sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a zig-zag sequence.
For example, 1,7,4,9,2,5 is a zig-zag sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, 1,4,7,2,5 and 1,7,4,5,5 are not zig-zag sequences, the first because its first two differences are positive and the second because its last difference is zero.
Given a sequence of integers, sequence, return the length of the longest subsequence of sequence that is a zig-zag sequence. A subsequence is obtained by deleting some number of elements (possibly zero) from the original sequence, leaving the remaining elements in their original order.


SOLUTION:

#include<iostream>
#include<vector>
using namespace std;
int main()
{
    int T = 0 ; 
    int N = 0 ;
    cin>>T;
    vector<int>num;
    vector<int> sol;
    vector<int>sign; // USED TO STORE THE SIGN OF LAST TWO ELEMENTS
    for(int t = 0 ; t < T ; t++)
    {
            cin>>N;
            num.clear();
            num.resize(N);
            sol.clear();
            sol.resize(N+1);
            sign.clear();
            sign.resize(N);
            for(int i = 0 ; i < N ; i++)
            {
                    cin>>num[i];
                    sol[i] = 1 ;
                    sign[i] = 0 ;
                    
            }
            sol[N]= 1 ;
            for(int i = 1 ; i < N ; i++)
            {
                    for(int j = 0 ; j < i ; j++)
                    {
                            if( j == 0)
                            {
                                
                                sign[i] = num[i] - num[j]; 
                                sol[i] = sol[j] + 1 ;
                            }
                            else if(  ( (sign[j] > 0) && (num[i] - num[j] < 0))  || ( (sign[j] < 0) && (num[i] - num[j] > 0) ) && ( sol[j] + 1 > sol[i]) )
                            {
                            sol[i] =  sol[j] +  1 ;
                            sign[i] = num[i] - num[j]; 
                                
                            }
                    }
            }  
            cout<<sol[N-1]<<endl;
    }
    cin.get();
    return 0;
}