Wednesday, 22 November 2017

LeetCode Java Solution:- Search Insert Position

Given a sorted array and a target value, return the index if the target is found. If not, return the index where it would be if it were inserted in order.
You may assume no duplicates in the array.
Example 1:
Input: [1,3,5,6], 5
Output: 2
Example 2:
Input: [1,3,5,6], 2
Output: 1
Example 3:
Input: [1,3,5,6], 7
Output: 4
Example 1:
Input: [1,3,5,6], 0
Output: 0

Solution:-

class Solution {
    public int searchInsert(int[] nums, int target) {
   
    int start = 0;
    int end = nums.length - 1;
    int mid = 0 ;
    while(start <= end){
    mid = (start + end)  / 2 ;
   
    if(nums[mid] == target){
    return mid;
    }
    else if(nums[mid] < target){
    start = mid + 1;
    }
    else{
    end = mid - 1;
    }
    }
   
    return start;
       
    }
}

Wednesday, 15 November 2017

LeetCode Java Solution:- Convert Sorted Array to Binary Search Tree

Given an array where elements are sorted in ascending order, convert it to a height balanced BST.

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode sortedArrayToBST(int[] nums) {
        
        if(nums.length == 0){
            return null;
        }

        return getTreeNode(nums, 0, nums.length -1);
    
        
    }
    
    private TreeNode getTreeNode( int[] nums, int a , int b){
        
        int start = a;
        int end = b ;
        
        if(start > end){
            return null;
        }
        
        int mid = (start +end) / 2 ;
       TreeNode node = new TreeNode(nums[mid]);
        node.left = getTreeNode(nums, start , mid -1);
        
        node.right = getTreeNode(nums, mid+1 , end);
        
        return node;
            
        
        
      
    }

}

LeetCode Java Solution : Convert Sorted List to Binary Search Tree

Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.


/**
 * Definition for singly-linked list.
 * public class ListNode {
 *     int val;
 *     ListNode next;
 *     ListNode(int x) { val = x; }
 * }
 */
/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public TreeNode sortedListToBST(ListNode head) {
        List<Integer> arr = convertListToArray(head);
        
        return getBInaryTree(arr, 0 , arr.size() -1);
    }
    
    
    
    private List<Integer> convertListToArray(ListNode head){
        List<Integer> arr = new ArrayList<Integer>();
        while(head != null){
            arr.add(head.val);
            head = head.next;
        }
        return arr;
    }
    
    
    private TreeNode getBInaryTree(List<Integer> arr, int start, int end){
        
        if(start > end){
            return null;
        }
        int mid = (start + end) / 2;
            
        TreeNode node = new TreeNode(arr.get(mid));
        node.left = getBInaryTree(arr, start, mid - 1);
        node.right = getBInaryTree(arr, mid + 1 , end);
        
        return node;
        
    }

}

Monday, 13 November 2017

LeetCode - Java Solution Merge Sorted Array

Given two sorted integer arrays nums1 and nums2, merge nums2 into nums1 as one sorted array.
Note:
You may assume that nums1 has enough space (size that is greater or equal to m + n) to hold additional elements from nums2. The number of elements initialized in nums1 and nums2 are m and n respectively.

Solution:-
class Solution {
    public void merge(int[] nums1, int m, int[] nums2, int n) {
        
        int [] ret = new int[m+n];
        int k = 0 , i = 0 , j = 0;
        while( i < m && j < n){
            if(nums1[i] <= nums2[j]){
                ret[k] = nums1[i];
                i++;
            }
            else{
                ret[k] = nums2[j];
                j++;
            }
            k++; 
        }
        if( i == m && j < n){    
            for(int item = j ; item < n ; item++ ){
             ret[k] = nums2[item];
            System.out.println(ret[k] + " "+ nums2[item]);
                k++;   
            }
        }
        
        if( j == n && i < m){
            for(int item = i ; item < m ; item++ ){
                
                ret[k] = nums1[item];
                k++;
            }
        }
        
        for(int l = 0 ; l < ret.length ; l++){
            nums1[l] = ret[l];
        }
    
    }
}

Sunday, 28 May 2017

241. Different Ways to Add Parentheses -- Leet Code- Java -Solution

Given a string of numbers and operators, return all possible results from computing all the different possible ways to group numbers and operators. The valid operators are +- and *.

Example 1
Input: "2-1-1".
((2-1)-1) = 0
(2-(1-1)) = 2
Output: [0, 2]

Example 2
Input: "2*3-4*5"
(2*(3-(4*5))) = -34
((2*3)-(4*5)) = -14
((2*(3-4))*5) = -10
(2*((3-4)*5)) = -10
(((2*3)-4)*5) = 10
Output:
Solution:
import java.util.ArrayList;
import java.util.List;

public class Solution {
    public List<Integer> diffWaysToCompute(String input) {
   
    List<Integer> res = new ArrayList<Integer>();
        
        for(int i = 0 ; i < input.length() ; i++){
        char c = input.charAt(i);
            if(input.charAt(i) == '-' || input.charAt(i) == '+' || input.charAt(i) == '*' ){
                List<Integer> lis1 = diffWaysToCompute(input.substring(0,i));
                List<Integer> lis2 = diffWaysToCompute(input.substring(i + 1));
                
                for(int item1:lis1 ){
                for(int item2:lis2){
                if(c == '-'){
                res.add(item1 - item2);
                }
                else if(c == '+'){
                res.add(item1 + item2);
                }
                else{
                res.add(item1 * item2);
                }
                }
                }
            }
        }
        if(res.size() == 0) {
        res.add(Integer.valueOf(input));
        }
        
        return res;
        
    }
}

Java -Solution- To find Articulation points in a graph

Find Articulation points in a graph so that we can divided the graph into two connected graphs.

Solution:

import java.util.Iterator;
import java.util.LinkedList;

public class Graph {

private int vertices; ;
private LinkedList<Integer> graph[];

private int time;

static final int NIL = -1;
int visited[];

//keep the distance from origin
private int distance[];

//keep the record of lowest distance of subtree
private int lowestAdj[];

//track the parent of vertices
private int parent[];

//articulate points store
private int articulatePoints[];


public Graph(int vertices){
this.vertices = vertices;
graph = new LinkedList[vertices];
visited = new int[vertices];
this.parent = new int[vertices];
this.articulatePoints = new int[vertices];
this.lowestAdj = new int[vertices];
this.distance = new int[vertices];
this.initialize();
}

private void initialize(){
for(int i = 0 ; i < this.vertices ; i++){
graph[i] = new LinkedList<Integer>();
}
}

public void addEdge(int u , int v){
graph[u].add(v);
graph[v].add(u);
}

private void articulateUtil(int u){

int children  = 0 ;

this.visited[u] = 1;

this.distance[u] = this.lowestAdj[u] = ++time;

Iterator<Integer> items = this.graph[u].iterator();

while(items.hasNext()){

int item = items.next();

if(this.visited[item] == 0){
children++;
this.parent[item] = u;
articulateUtil(item);

lowestAdj[u] = Math.min(lowestAdj[u], lowestAdj[item]);

//we need to find two conditions one for parent and another for back edge

if(parent[u] == NIL && children > 1){
this.articulatePoints[u] = 1;
}
else if(this.parent[u] != NIL && this.distance[u] <= this.lowestAdj[item]){
this.articulatePoints[u] = 1;
}

}

else if( item != parent[u] ){
lowestAdj[u] = Math.min(distance[item], lowestAdj[u]);
}
}



}

public void findArticulatePoint(){

for(int i = 0 ; i < this.vertices ; i++){
this.parent[i] = NIL;
}
for(int i = 0 ; i < this.vertices ; i++){
if(this.visited[i] == 0){
this.articulateUtil(i);
}
}
for(int i = 0 ; i < this.vertices ; i++){
if(this.articulatePoints[i] == 1){
System.out.println("This is articulate points " + i);
}
}
}

public static void main(String [] args){
        Graph graph = new Graph(5);
        graph.addEdge(1, 0);
        graph.addEdge(0, 2);
        graph.addEdge(2, 1);
        graph.addEdge(0, 3);
        graph.addEdge(3, 4);
        graph.findArticulatePoint();

}

}

Reference :- http://www.geeksforgeeks.org/articulation-points-or-cut-vertices-in-a-graph/